skip to main content


Search for: All records

Creators/Authors contains: "Bose, Subhonmesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solar hosting capacity analysis (HCA) assesses the ability of a distribution network to host distributed solar generation without seriously violating distribution network constraints. In this paper, we consider risk-sensitive HCA that limits the risk of network constraint violations with a collection of scenarios of solar irradiance and nodal power demands, where risk is modeled via the conditional value at risk (CVaR) measure. First, we consider the question of maximizing aggregate installed solar capacities, subject to risk constraints and solve it as a second-order cone program (SOCP) with a standard conic relaxation of the feasible set of the power flow equations. Second, we design an incremental algorithm to decide whether a configuration of solar installations has acceptable risk of constraint violations, modeled via CVaR. The algorithm circumvents explicit risk computation by incrementally constructing inner and outer polyhedral approximations of the set of acceptable solar installation configurations from prior such tests conducted. Our numerical examples study the impact of risk parameters, the number of scenarios and the scalability of our framework. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Krause, Andreas ; Brunskill, Emma ; Cho, Kyunghyun ; Engelhardt, Barbara ; Sabato, Sivan ; Scarlett, Jonathan (Ed.)
    Transfer operators provide a rich framework for representing the dynamics of very general, nonlinear dynamical systems. When interacting with reproducing kernel Hilbert spaces (RKHS), descriptions of dynamics often incur prohibitive data storage requirements, motivating dataset sparsification as a precursory step to computation. Further, in practice, data is available in the form of trajectories, introducing correlation between samples. In this work, we present a method for sparse learning of transfer operators from $\beta$-mixing stochastic processes, in both discrete and continuous time, and provide sample complexity analysis extending existing theoretical guarantees for learning from non-sparse, i.i.d. data. In addressing continuous-time settings, we develop precise descriptions using covariance-type operators for the infinitesimal generator that aids in the sample complexity analysis. We empirically illustrate the efficacy of our sparse embedding approach through deterministic and stochastic nonlinear system examples. 
    more » « less
    Free, publicly-accessible full text available July 29, 2024
  3. Conditional mean embedding (CME) operators encode conditional probability densities within Reproducing Kernel Hilbert Space (RKHS). In this paper, we present a decentralized algorithm for a collection of agents to cooperatively approximate CME over a network. Communication constraints limit the agents from sending all data to their neighbors; we only allow sparse representations of covariance operators to be exchanged among agents, compositions of which defines CME. Using a coherence-based compression scheme, we present a consensus-type algorithm that preserves the average of the approximations of the covariance operators across the network. We theoretically prove that the iterative dynamics in RKHS is stable. We then empirically study our algorithm to estimate CMEs to learn spectra of Koopman operators for Markovian dynamical systems and to execute approximate value iteration for Markov decision processes (MDPs). 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  4. We study a first-order primal-dual subgradient method to optimize risk-constrained risk-penalized optimization problems, where risk is modeled via the popular conditional value at risk (CVaR) measure. The algorithm processes independent and identically distributed samples from the underlying uncertainty in an online fashion and produces an η/√K-approximately feasible and η/√K-approximately optimal point within K iterations with constant step-size, where η increases with tunable risk-parameters of CVaR. We find optimized step sizes using our bounds and precisely characterize the computational cost of risk aversion as revealed by the growth in η. Our proposed algorithm makes a simple modification to a typical primal-dual stochastic subgradient algorithm. With this mild change, our analysis surprisingly obviates the need to impose a priori bounds or complex adaptive bounding schemes for dual variables to execute the algorithm as assumed in many prior works. We also draw interesting parallels in sample complexity with that for chance-constrained programs derived in the literature with a very different solution architecture. 
    more » « less
  5. There are growing concerns over the ability of current electricity market designs to adequately model and optimize against the stochastic nature of renewable resources such as wind and solar. In this paper, we consider an economic dispatch problem that explicitly accounts for said uncertainty and enforces network and generation limits using conditional value at risk. Our key contribution is the definition and analysis of risk-sensitive locational marginal prices (risk-LMPs) derived from such a market clearing problem. Risk-LMPs extend conventional LMPs to the uncertain setting. Settlements defined via risk-LMPs compensate resources for both energy and reserve schedules. We study these prices via sample average approximation (SAA) on example power networks to demonstrate their viability for electricity pricing with large-scale integration of renewables. 
    more » « less